1,261 research outputs found

    The transferability of diatoms to clothing and the methods appropriate for their collection and analysis in forensic geoscience

    Get PDF
    AbstractForensic geoscience is concerned with the analysis of geological materials in order to compare and exclude environmental samples from a common source, or to identify an unknown provenance in a criminal investigation. Diatom analysis is currently an underused technique within the forensic geoscience approach, which has the potential to provide an independent ecological assessment of trace evidence. This study presents empirical data to provide a preliminary evidence base in order to be able to understand the nature of diatom transfers to items of clothing, and the collection of transferred diatom trace evidence from a range of environments under experimental conditions. Three diatom extraction methods were tested on clothing that had been in contact with soil and water sites: rinsing in water (RW), rinsing in ethanol (RE), and submersion in H2O2 solution (H). Scanning electron microscopy (S.E.M.) analysis was undertaken in order to examine the degree of diatom retention on treated clothing samples. The total diatom yield and species richness data was recorded from each experimental sample in order to compare the efficacy of each method in collecting a representative sample for analysis. Similarity was explored using correspondence analysis. The results highlight the efficiency of H2O2 submersion in consistently extracting high diatom counts with representative species from clothing exposed to both aquatic and terrestrial sites. This is corroborated by S.E.M. analysis. This paper provides an important empirical evidence base for both establishing that diatoms do indeed transfer to clothing under forensic conditions in a range of environments, and in identifying that H2O2 extraction is the most efficient technique for the optimal collection of comparative samples. There is therefore potentially great value in collecting and analysing diatom components of geoforensic samples in order to aid in forensic investigation

    Freshwater diatom persistence on clothing II: Further analysis of species assemblage dynamics over investigative timescales

    Get PDF
    Diatoms are a useful form of environmental trace evidence, yielding a circumstantial link between persons and scenes of forensic interest. A developing empirical research base has sought to understand those factors affecting the transfer and persistence of freshwater diatoms on clothing and footwear surfaces. Although an initial study has demonstrated that diatoms can persist on clothing following weeks of wear, no previous research has explored the temporal dynamics of a persistent species assemblage over timescales pertinent to forensic investigations. This study therefore aimed to determine if: (1) valve morphology (size and shape) influences diatom persistence, (2) the relative abundance of taxa within an assemblage affects retention, and (3) a persistent diatom assemblage retrieved from clothing after one month can reliably be compared to the site of initial transfer. To build on previous research findings which highlighted the impact of substrate and environmental seasonality on diatom transfer and persistence, here, nine clothing materials were tested in spring before a seasonal comparison in the winter. Fabric swatches were immersed in a freshwater river, worn attached to clothing, and subsamples retrieved at regular intervals (hours, days, weeks) up to one month post-immersion. Diatoms were extracted using a H2O2 technique and analysed via microscopy. The results indicated that smaller diatoms (< 10 µm) are retained in significantly greater abundance, with no statistically significant difference between centric and pennate diatom loss over time. Although a persistent species assemblage was relatively stable over the one month of wear, significant differences were identified between clothing substrate in the spring and between the seasonal samples. The most abundant environmental taxa were consistently identified in the forensic samples, with greater variability attributed to the retention of relatively less common species. The findings suggest that, despite a loss in the abundance and species-richness of diatoms retrieved from clothing over time, a persistent assemblage may provide a useful circumstantial link to the site of initial transfer. The complex relationships between clothing type, environmental seasonality, and time since wear on retention, emphasise the need for diatom trace evidence to be carefully interpreted within an exclusionary framework, and the significance of any casework findings to be determined with reference to empirical evidence bases

    Freshwater diatom persistence on clothing I: A quantitative assessment of trace evidence dynamics over time

    Get PDF
    Freshwater diatoms offer valuable circumstantial forensic indicators, with a growing empirical research base aiming to identify and understand some of the spatial and temporal factors affecting their validity as trace evidence. Previous studies demonstrated that recipient surface characteristics, environmental variability, and individual species traits influence the initial transfer of freshwater diatoms to clothing. However, no previous research has sought to consider the impact of these and other variables on the persistence of transferred diatoms over investigative timescales. Therefore, this study aimed to identify and explore diatom retention dynamics on clothing following wear over time (hours to weeks). A series of experiments were designed to examine the impact of clothing material, seasonality, and time since wear (persistence interval) on the total number and species-richness of diatoms recovered and their relative retention (%) over time. Nine clothing swatches were immersed in a freshwater environment and then worn for one month in the spring. Subsamples were retrieved at regular intervals (e.g. 30 mins, 1 h, 8 h, 24 h) up to one month, diatoms were extracted using a H2O2 method, and examined microscopically. Three clothing materials were subject to the same experiment in the winter to generate a seasonal comparison. The results broadly identified three stages of diatom persistence on clothing - rapid initial loss, variable intermediate decay, and sustained long-term presence. Clothing material significantly impacted the number of diatoms recovered and retention dynamics over time, with complex interactions identified with seasonality. Although fewer diatoms were recovered in the winter, overall retention trends were consistent at the different times of year. The findings demonstrate that diatoms can be recovered from clothing, even weeks or months after an initial transfer, yielding a useful environmental trace indicator for forensic reconstructions over investigative timescales. The impact of clothing material and seasonality on persistence identified cotton, acrylic, and viscose clothing as the most reliable temporal repository of diatom trace evidence, with a more abundant forensic assemblage available for forensic comparisons in the spring

    Freshwater diatom transfer to clothing: Spatial and temporal influences on trace evidence in forensic reconstructions

    Get PDF
    Environmental indicators are increasingly sought and analysed in a range of forensic reconstructions. Although the majority of casework and research studies are concerned with the criminal investigation of terrestrial habitats (soils, sediments, plants etc.), freshwater environments are also frequently encountered as crime scenes. As such, microalgae, particularly diatoms, may provide useful circumstantial trace evidence following their transfer to a victim or perpetrator. Diatom analysis is a relatively underused technique in forensic ecology, although an increased empirical research focus is beginning to recognise the evidential value of a transferred assemblage. This study aimed to examine three of the spatial and temporal variables known to influence the extent of an initial transfer of trace particulates, within the context of freshwater diatoms to clothing. A series of experiments were designed to consider the impact of recipient surface characteristics (clothing type), source environment conditions (seasonality), and morphological (type of diatom) variability, on the total number (no. per cm2) and species richness (total no. sp.) of an evidential diatom sample recovered from clothing. Nine commonly used clothing materials were immersed in a freshwater river at three times of year – the early and late spring and in the winter. Diatoms were recovered using a H2O2 extraction technique and examined microscopically. The results demonstrated that diatom transfer to clothing varies significantly, with a greater abundance and a higher species richness transferred to coarse woven surfaces including acrylic, linen, and viscose. Significantly fewer diatoms were transferred to clothing in the winter, in line with seasonal fluctuations in the source environment diatom community. Furthermore, variation in the relative abundance of particular diatom species was identified between clothing types, provisionally suggesting that morphological characteristics may also support or limit the transfer of material. These findings highlight that, although clothing may offer a valuable repository of freshwater diatom trace evidence, the interpretation of evidential material should be approached within an exclusionary framework. Thus, empirical data has been generated to develop evidence bases within forensic ecology, demonstrating some of the spatial and temporal factors which may contribute to or limit the transfer of evidence

    Freshwater diatom persistence on clothing I: A quantitative assessment of trace evidence dynamics over time.

    Get PDF
    Freshwater diatoms offer valuable circumstantial forensic indicators, with a growing empirical research base aiming to identify and understand some of the spatial and temporal factors affecting their validity as trace evidence. Previous studies demonstrated that recipient surface characteristics, environmental variability, and individual species traits influence the initial transfer of freshwater diatoms to clothing. However, no previous research has sought to consider the impact of these and other variables on the persistence of transferred diatoms over investigative timescales. Therefore, this study aimed to identify and explore diatom retention dynamics on clothing following wear over time (hours to weeks). A series of experiments were designed to examine the impact of clothing material, seasonality, and time since wear (persistence interval) on the total number and species-richness of diatoms recovered and their relative retention (%) over time. Nine clothing swatches were immersed in a freshwater environment and then worn for one month in the spring. Subsamples were retrieved at regular intervals (e.g. 30 mins, 1 h, 8 h, 24 h) up to one month, diatoms were extracted using a H2O2 method, and examined microscopically. Three clothing materials were subject to the same experiment in the winter to generate a seasonal comparison. The results broadly identified three stages of diatom persistence on clothing - rapid initial loss, variable intermediate decay, and sustained long-term presence. Clothing material significantly impacted the number of diatoms recovered and retention dynamics over time, with complex interactions identified with seasonality. Although fewer diatoms were recovered in the winter, overall retention trends were consistent at the different times of year. The findings demonstrate that diatoms can be recovered from clothing, even weeks or months after an initial transfer, yielding a useful environmental trace indicator for forensic reconstructions over investigative timescales. The impact of clothing material and seasonality on persistence identified cotton, acrylic, and viscose clothing as the most reliable temporal repository of diatom trace evidence, with a more abundant forensic assemblage available for forensic comparisons in the spring

    The Value of an Empirical Approach for the Assessment of Diatoms as Environmental Trace Evidence in Forensic Limnology

    Get PDF
    Environmental trace evidence is often encountered during a forensic investigation and is acknowledged to have the potential to contribute valuable circumstantial information pertaining to the context of an individual criminal event. Although traditional study has focused upon the analysis of terrestrial soil and sediment traces, there is growing potential for the forensic assessment of aquatic crime scenes, particularly those within freshwater environments. This paper outlines the current applications of limnology, particularly algae and diatom analysis, within forensic science and introduces new and ongoing research within the field. Two empirical studies are presented which highlight the importance of developing evidence bases within freshwater trace evidence analysis. These studies demonstrate the analytical capability of the Scanning Electron Microscope (SEM) at various stages of an investigation: in the initial screening and collection of an evidential sample from clothing (1); and in the analysis of preserved diatoms following various levels of their exposure to fire damage (2). The results highlight that the SEM provides a valuable tool during the initial stages of an investigation, determining the presence and abundance of a range of environmental indicators and directing further strategy for the more in-depth collection and analysis of a forensic sample. Furthermore, the preservation of diatoms adhering to clothing following prolonged exposure to fire, indicates that efforts to collect any destroyed evidence are worthwhile given the potential to recover freshwater traces over extended time scales. Finally, the value of adopting an empirical approach for the development of a forensically relevant evidence base within forensic limnology, and the importance of having an appreciation of the legal implications for the interpretation and admissibility of freshwater evidence is presented

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    • …
    corecore